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A new grid-less (no collocation) spectral projection method is presented. The
unsteady Navier—Stokes equations are approximated according to the variational
framework of Guermond and Quartapelle which accommodates two vector spaces
for the velocity fields obtained in the two half-steps of the fractional-step method
but retains only one in the final solution algorithm. Two different bases built on
Legendre polynomials are used for the velocity and pressure to solve the cor-
responding Helmholtz and Poisson equations by direct spectral elliptic solvers.
InterpolationsPy andPy_, are employed for velocity and pressure to satisfy the
LBB stability requirement and a Gauss—Legendre quadrature formula%Mth
integration points is used to prevent aliasing error in the pseudospectral evaluation
of the nonlinear terms. A BDF second-order time stepping is implemented to pro-
vide accurate numerical results about the stability of the singular driven cavity
problem. (© 2002 Elsevier Science

Key Words: Navier—Stokes equations; projection method; Galerkin—Legendre
spectral methods.

1. INTRODUCTION

Thefirstspectral version of the fractional-step method to solve the incompressible Nav
Stokes equations in the presence of rigid walls was proposed by Gottlieb and Orszag
nearly one decade after the projection method was introduced by Chorin[14, 15]and Ten
[38] in a finite difference context. In this spectral implementation bytthemethod, the
projection step was performed through a Poisson equation for the pressure before exec
the advection—diffusion step, with the nonlinear term evaluated explicitly. Noticeably, t
inviscid character of the projection step was taken into account by imposing a bound
condition in this step only on the normal component of velocity [17, p. 146 and 147]. Tt
is in full accordance with Ladyzhenskaya’s decomposition theorem which underlies
projection method and confers an essentially different character to the normal bounc
condition with respect to the tangential one(s); see also [37].
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The spectral projection method was further elaborated upon by Orszag and Kells, v
introduced the idea of a three-step scheme for 3D channel flow simulations [31]. In t
method, a purely convective step is performed first. Then, the obtained intermediate velo
is projected onto a divergence-free space and finally a vector parabolic problem is sol
enforcing the complete velocity boundary conditions for the viscous equation. The first t
steps are claimed to be second-order accurate in time while the last one is only first-o
accurate. This method was employed successfully to simulate the transition to turbulenc
Poiseuille and Couette flows between parallel planes. The spectral projection method
later extended to incompressible flows with a variable viscosity by Zang and Hussaini [4
see also [13, p. 222].

In subsequent studies, the Chorin—Temam projection method was implemented by
Taylor, and Hirsh according to a Chebyshev—collocation approach to compute steady
lutions in closed rectangular domains in two [27] and three [28] dimensions. A distincti
feature of their method is the expression of the projection step in the form of a Dat
problem, that is arad-divcoupled system for the pressure and velocity unknowns. Th
discrete counterpart of the continuity equation is satisfied inside the domain as well as
the boundary, in the sense of an assumed collocation scheme. In the words of the aut
satisfying the continuity equation on the boundary provides the lacking boundary condit
for the pressure in the projection step. Apparently, the complete no-slip conditions are
forced on either the intermediate or the end-of-step velocity but not on both. In this resp
such a procedure matches properly the aforementioned inviscid character of the projec
step and produces accurate two- and three-dimensional results. Also basgdadndivy
approach and on a Chebyshev—collocation spatial discretization is the splitting techni
proposed more recently by Heinrichs [23]. In this case, the Uzawa algorithm is employe
the inviscid step, leading to a pseudo-Laplace equation for the pressure. This splitting
been successfully extended to reach a third-order time accuracy by employing a suit:
pressure extrapolation in the first step [24, 25]. Heinrichs’ method has been also elabor
upon by Botella [10] who proposed a third-order projection scheme employing Chebyst
polynomials and Gauss—Lobatto collocation, with the incompressible step still expres
in the form of a Darcy problem.

A mathematically more satisfactory treatment of spectral projection methods has b
achieved by resorting to the Galerkin variational formulation of the problem of the for
well established in the context of finite element approximations many years ago; see
Temam’s monograph [37]. Suitable spectral representations based on Legendre polynor
have been introduced by Jie Shen to solve elliptic problems [34] and have been u
subsequently to build a Galerkin formulation of the projection method [35]. A secon
order version of this method for flows in closed cylindrical geometries has been proposec
Lopez and Shen [30]. This method features a second-order BDF time stepping and is b
on the incremental scheme originally formulated by Goda [16] and Van Kan [39], whel
differently from Chorin—Temam original scheme, an explicit pressure gradient term appe
in the momentum equation. We notice that all the aforementioned higher-order project
schemes make no distinction between the functional spaces in which the intermediate
end-of-step velocities are to be represented.

The fractional-step idea has been pursued also to solve the unsteady version of the S
problem with an increasing order of accuracy in time; see for instance the works by Bat
etal.and by Karniadakist al.[8, 26]. These spectral methods are however characterized |
a coupling between the viscous and incompressible steps through the boundary cond
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for pressure, and therefore they can hardly be put under the banner of the class of proje:
methods.

Many different versions of projection methods have been proposed over the years,
rigorous analysis about their approximation and stability properties, encompassing bott
incremental and non incremental fractional stepping, has been established only recently
35]. In particular, fully discrete projection methods for finite element spatial approximatio
have been thoroughly investigated by Guermond and Quartapelle [18, 20, 21]. This anal
has pointed out that the structural difference existing between the equations of the two (t
steps requires the introduction of two different functional spaces for the intermediate
end-of-step velocities which are endowed with different regularities, napendH,
respectively. Indeed, for instance, the normal component of the end-of-step velocity
discontinuous at the element interfaces when standard Lagrangian elements are used
fact does not entail any difficulty insofar as the same analysis demonstrates that only
intermediate velocity is present in the final solution algorithm, leading to a computer cc
of the utmost simplicity. These ideas have been further exploited recently by Guerme
in a new second-order accurate finite element projection scheme, based on a BDF
discretization for which unconditional stability is obtained through a semi-implicit treatme
of the nonlinear term [19].

In this paper we implement the incremental projection method of Guermond a
Quartapelle [18, 19, 20, 21] using the second-order BDF time stepping and we introd
an original mixed spectral representation of the Navier—Stokes equations by mean
Legendre polynomials. The proposed scheme is similar to the projection method of Lo
and Shen [30] based on Galerkin—Legendre (—Chebyshev) representation and sec
order BDF scheme. However, our scheme closely follows Guermond’s ideas and anal
namely, the elimination of the end-of-step velocity, thus getting rid of the low regulari
of the HY space to which such a velocity field belongs. This elimination entails col
sequences also in the spectral case where the approximate velocity belongs to the ¢
Py € C*°, so that the difference of the two velocity spaces must be taken into accoun
avoid encountering mathematical difficulties [18]. Another element of distinction of tt
proposed method is that two different polynomial bases are employed to represent
velocity and pressure fields in order to permit the separation of variables in the num
cal solution of both the Dirichlet and Neumann boundary value problems for velocity a
pressure.

By employing the Galerkin—Legendre spatial discretization and separation of variak
proposed in [34], and thanks to the simplicity of the considered projection method, we
able to construct an algorithm that is required to solve, at each time step, Helmholtz
Poisson equations by means of double-diagonalization direct solvers [3]. Character
properties of the method are the absence of any grid in the approximation of the lin
problem, with all of the discrete spatial operators being evaluated exactly and mos
them in closed form, and the banded structure assumed by most of such operators w
allows efficient matrix multiplication in the solution algorithm. As far as the nonlinez
terms are concerned, the pseudospectral technique is adopted with the aid of the primr
Gauss-Legendre quadrature points. The noncollocative character of the proposed me
has two implications: (i) the LBB condition can be satisfied quite naturally by selecting tv
different polynomial orders for velocity and pressure, thus preventing the occurrence
spurious pressure modes; (ii) aliasing errors in the nonlinear term are avoided by resol
to a quadrature formula of an appropriate order, such as the WeII—kgthule. By the way,
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it is useful to note that the method extends immediately to three dimensions by employ
the 3D fast spectral Dirichlet solver given in [4] and the corresponding algorithm for tt
Neumann problem.

The paper is organized as follows. In Section 2, the mathematical problem is state
strong form and, after introducing the Legendre spatial approximations, a semi-disci
variational counterpart of the problem is derived. In Section 3, the second-order BDF inc
mental projection method is presented and the corresponding fully discrete weak prob
is given. Section 4 details the various matrices representing the one-dimensional sp
differential operators according to the mixed basis Galerkin—Legendre formulation p
posed in the work. Moreover, the Gauss—Legendre-based pseudospectral treatment ¢
nonlinear terms is described. In Section 5, some numerical tests are presented to verif
predicted error estimates and to assess the efficiency properties of the spectral solver ac
a stability investigation of the singular driven cavity problem. Finally, Section 6 is devote
to the concluding remarks.

2. FORMULATION OF THE PROBLEM

2.1. The Navier—Stokes Equations

We consider the time-dependent incompressible Navier—Stokes equations formulate
terms of velocityu and pressurg. The complete mathematical statement of the probler
is: Findu and p (up to a constant) so that

5
M VU4 U VUt Vp=t,

ot
V.u=0, 2.1)
Upe =0,
Uit=0 = Uo,

wherev is the viscosityf is a known body force, ang is the divergence-free initial velocity
field. For simplicity, we assume homogeneous boundary conditions. The fluid dénigin
assumed to be the open squard (+1)2. The data are assumed to be regular enough ar
to satisfy all the compatibility conditions needed for a smooth solution to exist for all tim
cf., e.g., [32].

2.2. Legendre Spectral Approximation

To build a spectral approximation of problem (2.1) we introduce the finite dimension
spaceXy = (Py ® Py)2. We shall approximate the velocity ¥ n = Xy N H%,(Q), and
the pressure iMy = Py ® Py, the pressure field being understood to be defined up t
an additive constant. The polynomial orderfor the velocity is in general different from
the polynomial ordemN for the pressure. Herel3(Q) is the standard notation for the
Sobolev space of vector-valued functions square integrable and with square integrable
derivatives or2 and with zero trace o8<2.

To recast (2.1) in a weak form by the Galerkin—Legendre spectral method, we consi
two different bases for approximating velocity and pressure.
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FIG. 1. Left: functions of the Legendre basis‘(x),n =0, 1,2, ..., for Dirichlet boundary conditions.
Right: functions of the Legendre badi§(x), i = 0,1, 2, ..., for natural boundary conditions.

Since the velocity field satisfies Dirichlet conditions, we adopt the basis introduced
Jie Shenin [34],

Lix) =1
X
Li(x) = NG (2.2)
«ron _ Ln2(X) = Ln(X)
L0 == e - "EZ

whereL,(x), n > 0, are Legendre polynomials. This basis includes the first two modes 1
imposing nonhomogeneous Dirichlet conditions by means of a (numerical) lifting descrit
in details in [3]. In practice we have

Xon = [spar{Li(0Li(y):2<m< N,2<n< N}~ (2.3)

The first few functiond_;;(x) are shown on the left in Fig. 1. This basis generates spar:
stiffness and mass matrices. More specifically, the restrictiof tp of the stiffness matrix

is the identity matrix, while the mass matrix is pentadiagonal symmetric with only thre
codiagonals different from zero. The nonzero elements of the mass matrix are given in
and [34].

As far as the pressure approximation is concerned, since this unknown in the fractic
step projection method satisfies Neumann boundary conditions, a convenient basis
the two-dimensional problem is obtained by the direct product of the standard Legen
polynomials. This basis is normalized so as to obtain a mass matrix coincident with
identity matrix:

Li) = /A+ 3, Lax), A>0. (2.4)

The first few functiond £ (x) of the basis for Neumann conditions are shown on the rigk
in Fig. 1. In this basis, the mass matrix is simply the identity while the stiffness matr
is full, and is evaluated exactly (within roundoff error) by means of the Gauss—Legen
numerical quadrature.
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The velocity and pressure fields representing the approximate solution to the Navi
Stokes problem (2.1) are expanded in the double series,

N N

Un(t X, Y) = > La00, Unm(®), Ly, <, (2.5)
n=2 m=2
N N

Pat, X, y) = > Li00), Pam®, La), ~<, (2.6)
A=0 m=0

where the symbc< is used to distinguish the summation on the second index from tt
summation on the first one, following the notation proposed in [3]. This manner of inc
cating the two different summations is particularly convenient to represent the action
spatial differential operators along the directionandy. In fact, the corresponding one-
dimensional operators are represented by square matrices that pre- and postmultiply
arraysU and P of the Legendre coefficients of velocity and pressure.

The choice of the two different bases for velocity and pressure is motivated on the ¢
hand by the need to impose essential boundary conditions for the viscous step and na
boundary conditions for the projection step, and on the other hand, by the aim to retai
both cases the tensor product structure of the elliptic solvers, as will be made clear in
following sections.

2.3. Semi-discrete Weak Spectral Equations

The approximate semi-discrete Navier—Stokes problem in weak form is the followir
Fort > 0, finduy € CX([0, T]; Xo.n). Py € CO([0, T]; M) such that, for allby € Xo.n
and allgy € My,

(vn, Un(t =0)) = (vn, Uo)

Gl
(UN, ;tN> +V(V’UN, VUN) + (’UN, (uy - V)UN) + (’UN, Vp,\]) = (’UN,f)N (2.7)

(ax. V-un) =0,

where (, -) denotes th& 2(Q) inner product, while-( -)y indicates a suitable approximation
of the L2(R) inner product for the source term, evaluated by means of a Gauss—Legen
quadrature formula.

It is known that the well posedness of the discrete problem depends on the satisfac
of a compatibility condition between the approximation spaces for the velocity and t
pressure, callethf-sup condition or LBB compatibility condition from Ladyzhenskaya,
Babwska and Brezzi [7, 12, 29]. In this work, thef-sup condition has been satisfied by
assumingN = N — 2, indeed we have the following result (see Bernardi and Maday [9])

LEMMA. WhenN = N — 2, there isg > 0 such that

Vag € Mg, Jon € Xon,on £ 0 (Gg. V-vn) = BN"Y2agllollon g (2.8)

Ifthe fieldsu(-, t) andp(-, t), exact solution of problem (2.1), own the regularity45t($2)
and H°~1(Q), respectivelys > 1, then the solutionuy, py;) of the weak approximate
problem (2.7) converges to the exact solution with a rate equaltesp.oc — 1) in theL?
(resp.HY) norm, as stated by the following estimates:
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THEOREM. WhenN = N — 2, we have

U — Unll o712 < N7 {lIUllwe:h7 @) + | PlwisoT:H-1@) } (2.9)

and

~1/2
lu—unllL=@T:Hi@) + N 2lp— Py I, T;L2(2)

17
< NV {Jullwreo,T:H (@) + I Pllweso,T:Ho-1() | - (2.10)

In this theorem HS(2) (H3(2)) denotes the Sobolev space of scalar (vector) functior
which are square integrable ov@rand whose derivatives are also square integrable ov
Q up to orders; W2>(0, T; H3(Q)) denotes the space of functions which are absolutel
integrable in any power, together with their first time derivative, on the int¢éyal) and
areH3(Q2) in space for each time i(0, T).

3. THE SECOND-ORDER BDF SPECTRAL PROJECTION METHOD

The projection method is a time-marching algorithm composed of two separate subs
aiming at decoupling the effect of viscosity from the incompressibility constraint. At ea
time step, an intermediate velocity is computed by advancing in time the momentum ec
tion with the pressure gradient term omitted. The end-of-step velocity is then obtained
projecting such an intermediate velocity onto the space of divergence-free vector fields\
zero normal component on the boundary and determining an approximation of the pres
field. The incremental version of the projection method (also known as pressure correc
method) consists in making explicit the pressure at the viscous step and correcting
the projection step, while still retaining the complete uncoupling of viscous diffusion fro
incompressibility constraint.

According to the theoretical analysis given in [21], the incremental version, using
Galerkin spatial approximation and a first-order Euler time stepping, is more accurate t
the nonincremental one for any value of the time step. In fact, the incremental fractior
step method is characterized by a time-splitting erro©ofAt)?). This property can be
exploited in order to develop a second-order projection method by introducing a suita
second-order accurate time discretization.

In this work, we consider the scheme based on the second order BDF (Backward |
ference Formula), which has been introduced and studied thoroughly by Guermond [
Here this scheme is applied in the context of the proposed Galerkin—Legendre spatial
proximation.

3.1. BDF Incremental Time Discretization

For generality of the final solution algorithm, hereafter we consider nonhomogene
boundary conditions for the velocity of the foray, = b, where the velocity daturh is
assumed to satisfy the global incompressibility constrijpin - b = 0.

Usingk to denote the time index, two sequences of approximate velogitfés.o and
(G)k=1 are sought for. We set now’ = ug and assume that an initial pressure fi€l@l
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is available or can be evaluated as the steady'spatssure associated with the initial
velocity uo.
Let us consider the time steps for= 1, leaving the first stefx = 0, for later discussion.
The BDF incremental projection method consists in solving the following two problems
First, consider the diffusion step

K+1 _ g trok o i trik—1
Butt —4ifa 4+iTae PVRURHL = Rl (gl gkt g pk,

2At (3.1)
uk+l|89 — bk+1’

where we have introduced the linearly extrapolated velagity = 2u* — uk-1,
Then, perform the projection step in the following second-order incremental form:

(3.2)

In the projection step (3.2) appears the injection opeliafi@m Hé(Q) into the space
HIV(Q) = {# € LA(Q) | V - © € LA(R),n - D|yq = O},

which has the correct regularity for the velocity field obtained in the (inviscid) projectic
step. Correspondingly, in the viscous problem (3.1) there is the transpose opéraioe
expressiov- : HIV(Q) — L2(Q) is an extension oW - : H3(Q2) — L%(R) in the sense
that we have the remarkable property:

V.i=V. and i'V=V.

This distinction may seem unduly pedantic in the context of the spatially continuous pre
lem, but it proves to be of the utmost importance when it comes to discretizing the equati
in space; for details see [21].

By applyingﬁ. to the first equation of (3.2), we obtain the following Neumann problen
for the Poisson equation for the incremepf* — p),

_@Z(karl _ pk) — _Titv . Uk+l,
dPT—p9| _ (3.3)
an sa
where we have use¥ -i = V..

In the first time steggk = 0), the incremental projection scheme based on the two-levi
Euler time discretization is exploited to determine the first veladitsind pressure*. This

! This assumption breaks down in the case of an impulsive start whemeteg O at the initial time on (part
of) the boundary; for details see [32, Section 1.2].
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means solving the viscous diffusion problem

ut — o
— oWl =1 — 0 v)u® — vp°,
At (3.4)

1
ullpe = b,

and the incremental Poisson problem

—V3(p' - p) = (A IV - ut,

o =P _, (3.5)
an sa

so that the first end-of-step velocity is givenby= iu® — AtV (p* — pO).

As anticipated, the end-of-step velocity can be profitably eliminated from the algorith
The elimination in the BDF method requires paying special attention to the two steps w
k =1 andk = 2. In fact, the first end-of-step velocity i8 = iu® — AtV (p* — p° and
its elimination gives expressions for the extrapolated pressure in the second and third
stepk = 1 andk = 2 different from that valid at all other subsequent time stepskvith3.

A direct calculation leads to the following equation of the viscous steg ferl, with the
end-of-step velocity eliminated,

3uktt — 4uk 4 uk-t
2At

_ vvzuk+1 — fk+l _ (u|:+1 . V)u|:+l

Vv @3p —2p° ifk=1
—{ iV (14p? —11p' +3p°%) ifk=2 (3.6)
sV@pk—5pt+p¢?) ifk>3

k+1 k+1
U e = b

3.2. Fully Discrete Equations

By introducing the finite dimensional spac¥sy and Mg, we recast the BDF incre-
mental projection algorithm in weak form. The nonhomogeneous Dirichlet condition f
the velocity is taken into account by means of a lifting described thoroughly in [3]. Th
means that the solutiaf* is expressed in the form

U™ = Ugen  + USN- (3.7)

Here, the first termuge. y € Xy and is such thatlge v 50 ~ b“*! in the sense of the
L2(32) projection (but for the corner values, which are imposed exactly) while the seco
term u'{,f,\,l belongs toXgn and satisfies the equation governinﬁ1 with the right-hand
side perturbed by the lifting. The latter is implemented numerically through the “extende
mass matrixM*; for details see [3].

Considering, for instance, the general viscous step valid for3, we have the weak

problem:
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Fork > 3, finduy € Xon such that, for alby € Xon,

3ultt — 4uk; + ul? }
, s V , VU +1
(’uN AL + v (Vo )

ON, Ut ) — v (Von, Vuger ) + (vN,fk+1) (3.8)

T 2At ( N

1
= (on. WK - WHUER) — 3(’UN, V(7pf —5p5 1+ PS5 ?).

Still choosingXy + @M,\] as the functional space for the end-of-step velodity}, the
weak form of the projection step of the BDF method reads:
Fork > 1, find (p"™ — p¥) € My such that, for alby; € My;,

(Vag, V(P = pf)) = —5— (ag. V- ulg™). (3.9)

2At
IntroducingL (X)L (y), 2 < (n,m) < N, [resp. L<> (X)Li(y), 0 < (A, M) < N]astest
functions in Eq. (3.8) [resp. (3.9)] the two substeps are expressed in matrix form as

Uk+lM* + M* Uk+l + )/M*U(I-()+1M* — FkJrl’ (310)
D<>(Pk+1 _ Pk) + (Pk+1 _ Pk) D¢ = Gk+1’ (311)

wherey = 3/(2vAt). InEqg. (3.10)M* is the mass matrix associated with the basgisn =
0,..., N and, similarly, in Eq. (3.11D¢ is the stiffness matrix associated with the basis
LiA=0,..., N. Because of the symmetry &fl* and D¢, we have not indicated the
transposition of matrices that multiply on the right.

The right-hand sides of the two Egs. (3.10) and (3.11) are defined, respectively, by

Fivm = 5xp (LhOLR(). AU —ui?) + (LioLam, £
~ oAt (LEOOLE(Y), Ugen ) — v <|_*/(x)|_ (y), ”b; N)
(L X)L¥(y), u"; N) ;(L OLE®Y), V(7P —5p5 ™ + p&2))
— (LEOOLA(Y), (U - WUk, (3.12)
G = — Z—zt(LQ(X)L (y). V- ui™). (3.13)

The evaluation of the terms involving the pressure gradient and the velocity divergence
quires the computation of integrals associated with “hybrid” scalar products of the ty
(L0, L' (¥)) and (L§(x), L (x)), respectively. Moreover, these terms require alsc
the computation of “hybrid” mass matrices of the tyef (x), L5 (x)) and(Lg(x), L%(x)).
The profiles and elements of all these matrices will be given in Section 4.1. The nonlin
terms are evaluated by means of the pseudospectral technique based here on the G
Legendre quadrature and resorting to thé/3 rule to ensure exact integration of the
guadratic nonlinearities, as described in Section 4.2.



MIXED-BASIS SPECTRAL PROJECTION METHOD 11

The solution of the algebraic systems (3.10) for the velocity components is obtair
by means of a direct fast Helmholtz solver based on the eigen-decomposition of the n
matrices in the two spatial directions; see [3], and [4] for the 3D case. The solution
the pressure system (3.11) is obtained by an analogous fast spectral Poisson solver v
imposes the boundary condition in the standard natural way and is based on the ei
decomposition of the stiffness matrices.

4. GALERKIN-LEGENDRE MATRICES AND PSEUDOSPECTRAL TECHNIQUE

In this section we provide the explicit expressions of the various “hybrid” matrices, i.
involving scalar products of pairs of functions belonging to the two different bases, tt
occurr in the right-hand sides (3.12) and (3.13) of the algebraic systems of equations
velocity (3.10) and pressure (3.11).

Moreover, we detail how to evaluate the nonlinear terms by means of a pseudospe
technique ensconced in the integration points of Gauss—Legendre quadrature formula

4.1. Hybrid Matrices

Let us now consider the various hybrid matrices needed to evaluate the right-hand s
of the momentum and pressure equations (3.12) and (3.13). The linear terms involving
gradient and the divergence are rewritten here as

HT{m * *
hy (= (EROOLRM). Vag).

A,m
and

Gam = (LAOOLA(Y). V - un).
We first consider the-component of the term associated with the pressure gradient, nam

N N
X *0 . *0
Hr‘l,m - Z anyﬁ? 8 Pn,m, mr’ﬁ»me
=0

where we introduced the hybrid (in general rectangular) matd&eandM ** with elements
defined by

1
a;‘fﬁz/ LrxLg(x)dx, 0<n<N,0<A<N,
-1

1
M z/lL;ﬁ(x)Lg(x)dx, 0<n<N,0<h<N.

IA

In matrix form, the contribution to the right-hand side of the velocity equation resultir
from the pressure gradient reads

HX = A*SP(M*)T and HY = M*§P(A*)T,

where the superscrigt denotes the transposed matrix.
The matricesA** and M** display a sparse profile and their nonzero elements can |
evaluated in closed form. For instance, the generic elemdvitofforn > 2 andf > 2, is
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defined by
Ln2—Ln

=G = (G

wherek(f) = A + % Thanks to the orthogonality of Legendre polynomials, the only ele
ments ofM*¢ different from zero lie on the diagonats= fi or n = fi + 2; in fact,

,km)Lﬁ) ,

n+3 1 1
2h-DA+3 Va1

Y LS T T L A>2
A+2,A = 220+ 3) A + % B 2a+1)(26+ 3) ' ‘

Thus, matrixM*® is tridiagonal with only two diagonals different from zero

i>2

v

0O --- -« .- N
bo
0 b
a O
M*<>= al ,
) bg
N-1 0
N ag
where
a9 = 1 ah = ! n>1
VS CJ@n+n@n+3° T 7
1
bo=+v2 bp=———, n>1
0 " an? —1

To calculate the elements 8, it is useful to proceed by integrating by parts the generic
element, so that, being,(+£1) = 0 if n > 2, we have, fon > 2 andf > 0,

3 = (L L) = = (L. L) + [LaLa] [Fy = = (L3 1R)-

Using the properties of Legendre polynomials [36], we obtain

» V=3 d L, dL0] . 1 i
an,ﬁ=—<n(n_l)m({(1—x> = ],Lﬁ<x> =(\/n—2Ln_1,k<n>Lﬁ),

which is different from zero only on the diagonal corresponding te i + 1,

A+ 35+ 3
=" =1 fAx>1
, Ayl
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The elements belonging to the first two rows are defined, farfl< N, by

8 = —(L5. i) + [LaLg]| Ly = kL) [y,
Ay = ~(L L)+ (L3 Ll = skl
For the parity properties of Legendre polynomials, we haveiferl
0, A odd
i even

o, fi even and 2 _
~(A+3). Aodd M V2D,

Therefore, matrixA*® presents the following structure

:s><>

20 =

0 1 N
0 /dy oy dg
1 Co C (o]
A*O_ 2 1
N—1 1
N

where
/ 1
d, =0, neven =2 n-l—é, n odd

Co =0, n odd Ch=+2n+1 neven> 2.

Ch=0,
The evaluation of the right-hand side for the pressure problem is obtained in an analog

way. In fact
N 1
ﬁm=z/ LO(x)L*’(x)dxunm/ LWL (y)dyz
1
+ Z/ L%(X)Lﬁ(x)dXVn,m/ L)L (y)dyz
n=0"-1
N N N N
- Z g% Unm, M s, z + Zm’;?ﬁ, Vim, B2 s z
n=0 m=0 n=0 m=0
where(U, V) = U and where the coefficients
1 A
b&'n E/ Le)Ly(x)dx,  0<A<N,0<n<N,
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define the hybrid matriB** which has the following structure:

01 2 -~ N—1 N
0
. 1

B = . 1
N 1

The proof of this result is identical, up to the sign, to the one described’for
Therefore, the right-hand side for the pressure problem, formulated in matrix form, re:

1
[BQ*U M*Q + (M*Q)TV(BO*)T]

G=-——
At

4.2. Pseudospectral Evaluation of the Nonlinear Term

The nonlinear term is evaluated according to Orszag’s pseudospectral technique.
first consider the nonlinear teroy (X, y) = uy - Vuy for the momentum equation
direction, expressed in weak formulation,

9 9
Com = (LACOLRW), X y)) = (L;‘(x)L;(y» UN%) ! (LHX)L;(y), UNGL;)

whereu = uk + v¥.

To determine the valueS, , of the L2 projection ofcy (X, y), one introduces first the
point values of the solutiomy andvy at theg(N +1) x g(N + 1) Gauss—Legendre points
in the squaref1, 1]?, as follows

unXx,y) > U= {UN(Xha Vi), 1 < (h, k) < g(N + 1)},

UIN(X, YY) = V= {UN(th Vi), 1< (h,k) < g(N + 1)},

and, similarly, the point values of the derivativesugf at the Gauss—Legendre integration
points

Upy = {W 1<(hk < gm +1)},

dUN (Xh, Vi) 3
=—1 h, k “(N+1);.

All these point values can be evaluated from the Legendre coefficient rayslV by
means of

U=L9eT, v=rveT,
Uxy = LYULT, Uy = LULYT,



MIXED-BASIS SPECTRAL PROJECTION METHOD 15

where we have introduced the matrices containing the point values of the basis functi
and of their derivatives at the same Gauss—Legendre points,

5*5{ ’ﬁ,n=L:(Xh),lshfg(NH),oSngN},
*/ */ % 3
L E{ h,n:Ln(Xh),lth2(N+1),O§n§N}.

The arrayC = {Chx. 1 < (h,k) < g’(N + 1)} of the point values of the nonlinear term
cn (X, y) is obtained from the relation

C=UxUx +VrUy),

wherex denotes the element-by-element multiplication of matrices. As a consequence,
pseudospectral approximation of the nonlinear term is obtained by projecting (I the
sense) this term by means of the direct-product Gauss—Legendre quadrature formula
3(N+1) x 3(N + 1) points, to give

11 F(N+D) 3N+
/ / Ln(0, e, ), Ly dxdya Y~ L), wh, Cok, wio Ly~
-1/-1 h=1 k=1

We emphasize that the number of points in the quadrature rule has been selected to «
aliasing errors, which could produce numerical instabilities at high Reynolds numbers |
The sought for matrixC = {C,, } of the L? projection of the nonlinear term is finally

given by

C = L£Twewcr,

where the Gauss—Legendre weights have been framed in the diagonal Wiratsidiag
(wq, wo, ..., w§<N+1))- The nonlinear termdy (X, y) = uy - Vuy for the y component
of the momentum equation is evaluated by the same procedure. The expression o
contribution of the nonlinear term to the right-hand side of the momentum equation is

Fro=—vICTW [UxUx + VrlU )| WL,

where, V) = U = L'ULT Uy, = LYULT, andUy, = L*ULT.

5. NUMERICAL RESULTS

5.1. Convergence Rate

To investigate the convergence properties of the spectral projection, we consider the
problem whose analytical solution is

Uy = —(cosxsiny)g(t),

uy = (sinx cosy)g(t),

1
p = —7lcos20) + cos2y)]g?(t),
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FIG. 2. Velocity (left) and pressure (right) fields for the analytical test case-afl for Re= 100.

on the square2 = (—1, 1)2. Introducing the velocity in the fornu = {i(x, y)g(t), the
source term corresponding to the momentum equation in the Navier—Stokes system r
f =0, y)[g'(t) + 2g(t)/Re]. The exact solution for this test case is shown in Fig. 2
where the velocity and pressure fields are depicted on the left and on the right in the fig!
Two test cases with two differegtt) functions have been performed in order to evaluate
the accuracy of the method in both space and time. For the space convergence cas
exponential time dependence, asymptotically approaching a steady state, has been sel
g(t) = 1 — exp(—at) with @ = 4. Spatial convergence results for velocity and pressure :
timet = 200 are reported in Fig. 3 (left). Here, thé(22) and H(2) norms of the error,

1072 -grrerrrrerrre

1 omn
wlr2 1071
p_HN

102

Error
Error
E
.4“

FIG. 3. Space (left) and time (right) convergence rate for the second order BDF projection method.
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evaluated numerically by means of the Gaussian quadratuié¢ paints, are displayed.
Spectral convergence is obtained for the two variables in both norms. For the time c
vergence test, a sinusoidal time dependence has been empigiesd; sin(2t). Results
are presented in Fig. 3 (right) where tH&(0, 1; L?(Q2)) and1*°(0, 1; H(2)) norms of
the velocity and pressure error are reported: in this case velocity and pressure conv
with a second-order rate in both error norms. This result confirms the theoretical estim:
provided in [19]. Moreover, the convergence rate displayed by our computations is fot
not to be corrupted even when the error is measured by norms that are stronger than 1
considered by the theory.

5.2. Flow Stability in the Singular Driven Cavity

As asecondtest problem, the simulation of the flow in a square driven cavity is conside
The solution of this problem presents some difficulties because of the singular nature of 1
in the regions of the upper corners, where the horizontal wall slides on the stationary vert
walls. At these two points, the boundary value of the horizontal velocity is discontinuo
when passing from the fixed vertical walls to the moving horizontal one. As a consequer
the solution of the unregularized problem is characterized by a singular behavior at tr
points for any Reynolds number. However, the singular component of the solution car
evaluated analytically by an asymptotic expansion described by @tak§22] and can be
subtracted from the unknowns to obtain a regular problem, as shown by Botella and Pe
[11]. In the present work this technique has been adopted to avoid the occurrence of sp
oscillations in the spectral solution caused by Gibbs’ phenomenon.

The time accuracy of the proposed methods is assessed by computing unsteady
tions for an impulsive start of the wall (note that, in any caseb =0,t > 0) at Re =
1000. The vorticity field and the streamlines at titme 6.25 computed by the BDF pro-
jection method are given in Fig. 4. The secondary eddy developing on the vertical w
shown in Fig. 4 is identical in shape and intensity to that obtained by a spectral bih
monic solver based on the Glowinski—Pironneau method [3]. Moreover, the vorticity fie
at same time is virtually indistinguishable from the corresponding solution provided by t

0 - o K e -
0 1 0 1

FIG.4. \orticity field and streamlines for the impulsively started driven cavity flow foeER£000 at = 6.25.
Solution computed by the BDF spectral projection method Witk 96 andN = 94.
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FIG. 5. Differences between the value of the stream function in the center of the catity &t25 and
Re= 1000 for varyingAt. Differences between values computed by different spectral projection methods
nonincremental scheme, a first-order incremental scheme and the proposed second-order BDF scheme) w
reference values provided by((At)?) accurate spectral biharmonic solver wkh= 96 andN = 94.

vorticity-stream function solver once the latter is associated with the aforementioned te
nigque of singularity subtraction [5]. In Fig. 5 we compare the point value of the strea
function in the center of the cavity computed with the proposed projection methods w
the value obtained by the vorticity-stream function solver with a second-order BDF tir
integration we have implemented. The differences shown in this figure between the res
of the BDF projection method and the reference values can be hardly commented.

The performance of the proposed algorithm, run on a Digital 433au workstation with 1
Mbytes of RAM memory, can be evaluated from the data in Table | where the CPU time
seconds per time step is reported. In the same table, the CPU time per time step per r
is also reported from which the efficiency of the method can be appreciated.

TABLE |
Performance of the Proposed Algorithm

N Cpu time per time step (s)  Cpu time per time step per mode (s)

16 0.00278 10859x 10°°
32 0.01068 10430x 10°°
64 0.06376 5566x 107°

128 0.38021 B206x 10°°




MIXED-BASIS SPECTRAL PROJECTION METHOD 19

1.25 . —— . . 0.889 T T
12F | 0.8888 |
sk | 0.8886 -
0.8884
1f ]
0.8882
E. 105} B E.
0.888
1 i
0.8878
098 ] 0.8876
09 L 1 0.8874
0.85 . . L . . 0.8872 . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 3300 3305 3310 3315 3320 3325 3330
T T

FIG. 6. Total kinetic energy of the cavity flow with Re 8125: complete time history (left) and asymptotic
periodic behaviorf = 0.450 (right).

1 1

FIG. 7. Streamlines of the periodic solution for Re 8125 at four times separated by the time interval
T/4=1/(4f) =0.555
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FIG. 8. Top right corner (detail).

By means of the proposed BDF spectral projection scheme, we have investigated the
Hopf bifurcation of the flow in the singular driven cavity problem. The critical Reynold
number for the first transition to a periodic flow has been precisely localized to be inthe rai
80176 < Reyir < 80188 [1]. Justto give an idea of the accuracy permitted by the propose
method in simulating unsteady flows, we present here the solution at a Reynolds nun
Re =8125 slightly above the bifurcation. For such a value, the asymptotic solution is perio
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FIG. 9. Bottom right corner (detail).

with a frequencyf = 0.450. The oscillatory behavior is represented in Fig. 6 by mear
of the time evolution of the kinetic energy of the regular component of the velocity fie
integrated over the cavity. The asymptotic state of the flow is presented in Fig. 7 report
the streamlines at four times separated by the time int@nil= 1/(4f) = 0.555, which
corresponds to a complete cycle. The unsteady character of the flow is more evident ir
secondary eddies located in the top- and bottom-right corners, shown in the enlarger
given in Figs. 8 and 9, respectively.

6. CONCLUSIONS

In this paper we presented a new Galerkin—Legendre spectral implementation of
second-order incremental scheme proposed and analysed in a discrete abstract func
setting for both finite elements and spectral approximations in [18]—[21]. The convergel
properties of the scheme predicted by the theory are confirmed by the numerical tests st
in the paper. Our tests indicate that the incremental projection method has a second-c
error, confirming that, also in the spectral case, the time-splitting error of this method is
second order, which is not the case for its nonincremental counterpart.

The proposed spectral projection method adopts two different bases for the spatial
proximation of the velocity and pressure fields but does not require the introduction
any grid for the solution of the uncoupled linear subproblems provided by the fraction
step strategy. In other words, in the new algorithm, all the linear terms are treated c
pletely in the coefficients domain, without any transformation in or from the physical spa
Quite notably, most of the matrices representing the one-dimensional spatial differer
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operators are banded and can be expressed in closed form so that the preprocessing pf
the computation is indeed reduced to a minimal amount. As far as the nonlinear convec
terms are concerned, they are taken into account by means of a pseudospectral tech
based on Gauss-Legendre quadrature points. A quadrature formulélwitmints has
been selected to preclude aliasing errors. This possibility is offered by the noncolloca
nature of the method in which hierarchical polynomial bases are employed as oppose
nodal Lagrangian interpolants.

A great simplification in the proposed approach is allowed by the elimination of tt
end-of-step velocity with the associated need for solving mass matrix problems to detern
such a velocity. As a consequence, the proposed scheme is very easy to implemen
turn out to be very efficient, as shown by the tests performed in the paper. We reac
a very fast algorithm which allowed us to perform the long, time simulations require
to investigate the stability of the driven cavity flow [1] on an entry level workstatior
The same algorithm is currently extended straightforwardly to deal with three-dimensio
problems, and the same projection scheme has been recently implemented with gpect
elements [6].
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